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Abstract
Effects of synaptic noise on the retrieval process of associative memory neural
networks are studied from the viewpoint of neurobiological and biophysical
understanding of information processing in the brain. We investigate the
statistical mechanical properties of stochastic analogue neural networks with
temporally fluctuating synaptic noise, which is assumed to be white noise.
Such networks, in general, defy the use of the replica method, since they have
no energy concept. The self-consistent signal-to-noise analysis (SCSNA),
which is an alternative to the replica method for deriving a set of order
parameter equations, requires no energy concept and thus becomes available
in studying networks without energy functions. Applying the SCSNA to
stochastic networks requires the knowledge of the Thouless–Anderson–Palmer
(TAP) equation which defines the deterministic networks equivalent to the
original stochastic ones. The study of the TAP equation which is of particular
interest for the case without energy concept is very less, while it is closely
related to the SCSNA in the case with energy concept. This paper aims to
derive the TAP equation for networks with synaptic noise together with a set of
order parameter equations by a hybrid use of the cavity method and the SCSNA.

PACS numbers: 87.18.Sn, 87.10.+e, 07.05.Mh

1. Introduction

The replica method [1] for random spin systems has been successfully employed in neural
network models of associative memory [2–5]. However the replica method requires the
concept of free energy. On the other hand, various types of neural network models which
have no energy concept, such as a network with asymmetric synaptic coupling or temporally
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fluctuating synaptic coupling, may be in existence. The self-consistent signal-to-noise analysis
(SCSNA) [6–9], which is an alternative approach to the replica method for deriving a set of
order parameter equations, requires no energy concept. Thus it can be applicable to study the
statistical properties of a wider class of networks including networks without energy concept.

The SCSNA, which was originally proposed for deriving a set of order parameter equations
for a deterministic analogue neural network with or without energy functions, becomes
applicable to a stochastic network by noting that the TAP equation defines the deterministic
one equivalent to the original stochastic one. The SCSNA is closely related to the Thouless–
Anderson–Palmer (TAP) equation [10, 11] via the concept of cavity method in the case where
a network has energy concept [9] and the relationship between the two was studied in detail
in the networks with two-body and multi-body interactions [9, 12]. The coefficient of the
Onsager reaction term characteristic to the TAP equation, which determines the form of the
transfer function, is self-consistently obtained through the concept shared by the cavity method
and the SCSNA.

The TAP equation is of our interest for studying the statistical properties of a network
without energy concept. However the TAP equations for a network with synaptic noise are
not found in the literature. The main target of this paper is to derive the TAP equation for a
network with temporally fluctuating synaptic noise as multiplicative noise.

The effects of such synaptic noise on the retrieval properties of networks have been
studied in some recent works [13–16]. According to the stochastic resonance theory [17–19],
the temporally fluctuating synaptic noise may possibly be expected to reduce the interference of
the uncondensed patterns on the retrieval property of the network (noise in terms of stochastic
resonance) and, as a result, enhance the retrieval property or the storage capacity (signal) of
the network. However such an argument is not found in the literature. To discuss the effect
of temporally fluctuating synaptic noise on the retrieval property, it is important to construct
a tractable model to study the role played by such synaptic noise.

In literature, the term ‘synaptic noise’ is used in three kinds of meanings: (i) quenched
disorder in synaptic couplings [20], (ii) randomness related to the dilution of synaptic couplings
[21] and (iii) temporal fluctuation of synaptic couplings [13–16]. We will use the term ‘synaptic
noise’ in the third meaning in the present paper.

Cortes et al [25] (see also [16]) investigated the case where neurons obey a master
equation with continuous time and the synaptic couplings obey (i) slow dynamics [22, 23],
(ii) fast dynamics [15, 16, 24, 25] and (iii) middle speed dynamics [26, 27] compared to the
dynamics of neurons. In the first case, since the synaptic couplings obey slow dynamics, the
adiabatic approximation for the synaptic couplings becomes exact in the limit where the time
scale of synapse dynamics τ → ∞ and quenched random noise in couplings again arises.
Thus the synaptic noise is regarded as the well-known quenched random variable and this type
of synaptic noise has been studied as ‘synaptic noise’ in many publications [28].

In the second case, since the dynamics of the synaptic noise is sufficiently fast compared
to the dynamics of neurons, one can define the effective strength of synaptic coupling by
averaging the temporally fluctuating synaptic coupling [13–16, 29]. In this case, one can find
the effective Hamiltonian of the network and use well-known replica method [1] to obtain
the order parameters analytically [2, 3]. Another example of the fast synaptic dynamics can
be found in [30], which studies the properties of the equilibrium state of the system with
stochastically evolving couplings.

On the other hand, the third case is difficult to deal analytically especially in the case
where the number of memory patterns is proportional to the total number of neurons and only
numerical results based on computer simulations exist [26, 27]. In spite of these recent efforts
to elucidate the effects of synaptic noise on the retrieval properties of neural networks, such
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preceding studies have been based on the macroscopic viewpoint, where the order parameters
solely have been investigated, and the TAP equations for such cases have not been reported.

The purpose of this paper is two-fold. (i) We will derive the TAP equation for a stochastic
analogue network with temporally fluctuating multiplicative synaptic noise which is not found
in the literature. (ii) We will study the SCSNA and the TAP equation for such a network to
elucidate the effects of the multiplicative synaptic noise on the retrieval property from both
microscopic and macroscopic viewpoints. A part of this work is reported elsewhere [31].

This paper is organized as follows: in the next section, we will describe an analogue
neural network model with temporally fluctuating synaptic noise as multiplicative noise which
is assumed to be white noise to write down a set of Langevin equations, and derive the
corresponding Fokker–Planck equation. We will see that the equilibrium solution of the
Fokker–Planck equation is given as a Gibbs probability density with the effective temperature,
which should be determined self-consistently in the thermodynamic limit. In section 3, we will
apply the cavity method to derive the formal expression of the TAP equation (pre-TAP
equation). Then using the SCSNA, we will self-consistently obtain the concrete form of
the transfer function which yields the complete form of the TAP equation as well as a set of
order parameter equations. In section 4, the phase diagram for our model will be shown. In
the last section, we will conclude this paper.

2. Model and Fokker–Planck equation formalism

Let us deal with the following stochastic analogue neural network of N neurons with temporally
fluctuating synaptic noise:

ẋi = −φ′(xi) +
∑
j (�=i)

Jij (t)xj + ηi(t), (1a)

〈ηi(t)ηj (t
′)〉 = 2Dδij δ(t − t ′), (1b)

where xi (i = 1, . . . , N) represents a state of the neuron at site i taking a continuous value,
φ(xi) is a potential of an arbitrary form which determines the probability distribution of
xi in the case without the input

∑
j (�=i) Jij xj , ηi is the Langevin white noise with its noise

intensity 2D and Jij (t) is the synaptic coupling. We note here that, in the case of associative
memory neural network, the synaptic coupling Jij is usually defined by the well-known Hebb
learning rule. However some experimental results show that the synaptic couplings have
temporal fluctuations which originate from the dynamics of neurotransmitters or kinetics of
ion channels independent of that of neurons [32], and hence the effects of such synaptic noise
may be relevant to the retrieval properties in realistic networks. To investigate such effects of
synaptic noise, we assume the synaptic coupling taking the form

Jij (t) = J̄ ij + εij (t), (2a)

〈εij (t)εkl(t
′)〉 = 2D̃

N
δikδjlδ(t − t ′), (2b)

where J̄ ij is defined by the usual Hebb learning rule J̄ ij ≡ 1
N

∑p

µ=1 ξ
µ

i ξ
µ

j with p = αN the
number of patterns embedded in the network, ξµ

i = ±1 is the µth embedded pattern at neuron
i and εij (t) denotes the synaptic noise independent of ηi(t), which we assume in our model as
white noise with its intensity 2D̃/N for simplicity. Note that, in equation (1b), the synaptic
noise behaves as multiplicative noise and the synaptic coupling Jij (t) is asymmetric.
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Noting

lim
�t→0

1

�t

∫ t+�t

t

ds

∫ t+�t

t

ds ′
〈∑

k(�=i)

εik(s)xk(s)
∑
l(�=j)

εjl(s
′)xl(s

′)

〉
= 2D̃

N
δij

∑
k(�=i)

x2
k

by means of Ito integral, we obtain the Fokker–Planck equation corresponding to the Langevin
equation (1a) as

∂P (t, x)

∂t
= −

N∑
i=1

∂

∂xi


−φ′(xi) +

∑
j (�=i)

J̄ ij xj − (D + D̃q̂)
∂

∂xi


P(t, x), (3)

where q̂ ≡ 1
N

∑
j (�=i) x2

j . Since the self-averaging property holds in the thermodynamic limit
N → ∞, one can identify q̂ as

q̂ = 1

N

N∑
i=1

〈
x2

i

〉
, (4)

where 〈·〉 represents the thermal average with respect to P(t, x). Thus equation (3) is found
to be a nonlinear Fokker–Planck equation whose diffusion coefficient D + D̃q̂ depends on the
probability density P(t, x) [33, 34]. In this paper, we are concerned with deriving the TAP
equation and order parameter equations for the equilibrium state self-consistently. Furthermore
the order parameter q̂ is also obtained self-consistently in our framework as shown below.
Supposing q̂ is given, the Fokker–Planck equation (3) turns to be a linear equation and one
can easily find the equilibrium probability density for the linear Fokker–Planck equation (3)
as

PN(x) = Z−1 exp


−βeff


 N∑

i=1

φ(xi) −
∑
i<j

J̄ ij xixj





 , (5)

where Z denotes the normalization constant and

β−1
eff ≡ D + D̃q̂ (6)

plays the role of the effective temperature of the network. Note that the temperature of the
system is modified to β−1

eff as a consequence of the multiplicative noise and it depends on the
order parameter q̂. Here it is easily checked that the equilibrium distribution of the system
becomes Gibbs distribution in the thermodynamic limit N → ∞.

Since we have explicitly written down the equilibrium probability density (5) as a Gibbsian
form, one can define the (effective) Hamiltonian of N-body system as

HN ≡
N∑

i=1

φ(xi) −
∑
i<j

J̄ ij xixj . (7)

Then regarding the original network with multiplicative noise (1a) as an analogue version of
the standard Hopfield model whose Hamiltonian is given by equation (7) with the effective
temperature β−1

eff , one can apply the usual cavity method [2] to this system and derive the
(pre-)TAP equation.

3. The cavity method and self-consistent signal-to-noise analysis

We have obtained the equilibrium probability density as a Gibbsian form (5) and the effective
Hamiltonian (7) in the previous section. Thus the cavity method [2], which is usually applied
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to the network models for deriving the TAP equation [8, 9], is applicable for our model.
According to the cavity method, we divide the Hamiltonian of N-body system (7) into that of
(N − 1)-body system and the part involving the state of ith neuron as

HN = φ(xi) − hixi + HN−1,

where hi ≡ ∑
j (�=i) J̄ ij xj is the local field at site i and the Hamiltonian of (N −1)-body system

HN−1 is given as HN−1 ≡ ∑
j (�=i) φ(xj ) − ∑

j<k(�=i) J̄ jkxjxk . Then the marginal probability
density distribution of xi and the local field hi is given as

PN(xi, hi) =
∫ 

 ∏
j (�=i)

dxj


 δ


hi −

∑
j (�=i)

J̄ ij xj


 PN(x)

= Z̃−1 exp{−βeff[φ(xi) − hixi]}PN−1(hi),

where Z̃ is the normalization constant and PN−1(hi) denotes the probability density of the
local field hi in the (N − 1)-body system defined as

PN−1(hi) ≡ Z−1
N−1

∫ 
 ∏

j (�=i)

dxj


 δ


hi −

∑
j (�=i)

J̄ ij xj


 exp[−βeffHN−1],

where ZN−1 denotes the normalization constant. Since the local field is given as the summation
of a sufficiently large number of random variables and their cross-correlations are expected
to be O(1/

√
N), one can expect that PN−1(hi) turns out to be a Gaussian density in the

thermodynamic limit N → ∞ according to the central limit theorem:

PN−1(hi) = 1√
2πσ 2

exp

[
− (hi − 〈hi〉N−1)

2

2σ 2

]
,

where 〈·〉N−1 represents the thermal average with respect to the (N − 1)-body probability
density PN−1(x) and σ 2 is the variance of PN−1(hi), which is evaluated later self-consistently
in the framework of the SCSNA. Then taking the average of xi with respect to the marginal
probability PN(xi, hi) straightforwardly yields

〈xi〉 = F(〈hi〉N−1), (8)

where F is a transfer function defined as

F(y) ≡
∫

dx x exp
{−βeff

[
φ(x) − yx − βeffσ

2

2 x2
]}

∫
dx exp

{−βeff
[
φ(x) − yx − βeffσ 2

2 x2
]} . (9)

Similarly 〈hi〉N−1 is obtained as

〈hi〉N−1 = 〈hi〉 − βeffσ
2〈xi〉.

Thus we have the pre-TAP equation

〈xi〉 = F


∑

j (�=i)

J̄ ij 〈xj 〉 − Ons〈xi〉

 , (10)

where Ons ≡ βeffσ
2. Since the concrete form of the transfer function F depends on the

effective temperature βeff and the variance of the local field σ 2, it is necessary to obtain βeff

and σ 2 to have the TAP equation [7, 9].
Equation (10) is regarded as defining a deterministic analogue network corresponding

to the original stochastic one (1a), and hence we can apply the SCSNA to equation (10) to
determine βeff and σ 2 self-consistently as was studied for the case without synaptic noise
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[7, 9]. For simplicity, we here assume that the only one condensed pattern
{
ξ 1
i

}
is retrieved.

The extension to the case of an arbitrary finite number of condensed patterns is straightforward.
Using the overlap order parameter mµ ≡ 1

N

∑N
i=1 ξ

µ

i 〈xi〉, the equilibrium average of the local
field is rewritten as

〈hi〉 = ξ 1
i m1 +

∑
µ�2

ξ
µ

i mµ − α〈xi〉. (11)

Using the SCSNA, the above local field can be rewritten as [8, 9]

〈hi〉 = ξ 1
i m1 + ξ

µ

i mµ + ziµ + SCSNA〈xi〉, (12)

where
∑

ν�2 ξν
i mν = ξ

µ

i mµ + ziµ + γ 〈xi〉, SCSNA ≡ γ − α and ziµ is a Gaussian random
variable with a zero mean. As shown below, we will evaluate the overlap mµ self-consistently,
and then obtain ziµ and γ through the equivalence between the expression of the local
field (11) and (12). Substituting equation (12) into the pre-TAP equation (10) reads

〈xi〉 = F
(
ξ 1
i m1 + ξ

µ

i mµ + ziµ + (SCSNA − Ons)〈xi〉
)

and comparing this equation with equation (8) yields [9]

SCSNA = Ons,

since 〈hi〉N−1 is considered to be a Gaussian random variable which should not contain the
Onsager reaction term. Noting that mµ = O(1/

√
N) for µ � 2, one can obtain the overlap

for uncondensed patterns as

mµ = 1

N(1 − U)

N∑
j=1

ξ
µ

j F
(
ξ 1
j m1 + zjµ

)
, (13a)

U ≡ 1

N

N∑
j=1

F ′(ξ 1
j m1 + zjµ

)
, (13b)

where F ′ denotes the derivative of the transfer function F, and the order expansion of F with
respect to 1/

√
N has been applied to 〈xi〉 = F

(
ξ 1
i m1 + ziµ + ξ

µ

i mµ
)
. Using equation (13a)

and the definitions of ziµ and γ , one finds

γ = α

1 − U
,

ziµ = 1

N(1 − U)

∑
ν(�=1,µ)

∑
j (�=i)

ξ ν
i ξ ν

j F
(
ξ 1
j m1 + zjν

)
.

Thus the variance of ziµ is evaluated as

σ 2
z = α

(1 − U)2
〈F 2(ξm1 + z)〉ξ,z, (14a)

where 〈·〉ξ,z represents the average over random variables ξ = ±1 and the Gaussian variable z,
and the self-averaging property has been used. Similarly one obtains the set of order parameter
equations as

m1 = 〈ξF (ξm1 + z)〉ξ,z, (14b)

U = 〈F ′(ξm1 + z)〉ξ,z, (14c)

Ons = SCSNA = αU

1 − U
. (14d)
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In the case where the multiplicative synaptic noise does not exist or the intensity of the
synaptic noise is zero, i.e., βeff = β ≡ 1/D, the set of order parameter equations (14a)–(14d)
takes a closed form and determines the form of the transfer function F as well as the order
parameters self-consistently. For the case with multiplicative noise, however, it does not
suffice to determine the form of the transfer function. We need the order parameter q̂, which
determines βeff , as well as m1, U, σ 2

z , Ons to determine the concrete form of F. Since q̂ is
related to the macroscopic susceptibility of the system and, by definition of F (9), the order
parameter U corresponds with the susceptibility as U = βeff(〈x2〉 − 〈x〉2), one finds

q̂ = U

βeff
+

(1 − U)2

α
σ 2

z . (14e)

The set of equations (6), (14a)–(14e) takes a closed form and thus one can determine the form
of F self-consistently as well as the set of order parameters. Therefore substituting into the
pre-TAP equation (10), the solutions βeff and Ons that are self-consistently obtained within
this framework yield the TAP equation.

4. Phase diagram and numerical results

We have derived the TAP equation as well as the set of order parameter equations in the
previous section. In this section, we show the phase diagram by solving the set of order
parameter equations (14a)–(14e) numerically and investigate the effect of the multiplicative
synaptic noise.

For the well-known transfer function of the Ising neurons F(x) = tanh(βx), it is easy
to understand the effects of the interference of the synaptic noise. This choice of the transfer
function is equivalent to taking the potential φ as

exp[−βeffφ(x)]∫
exp[−βeffφ(x)] dx

= 1

2
δ(x − 1) +

1

2
δ(x + 1).

In the Ising neuron model, since q̂ is simply given as q̂ = 1 and β−1
eff = D + D̃, the retrieval

state vanishes for D̃ � 1 according to the results of Amit–Geutfreund–Sompolinsky (AGS)
[3].

In this section, for simplicity, we consider the double-well potential whose minima are
located at x = ±1:

φ(x) = A

4
x4 − A

2
x2, (15)

where A determines the depth of the wells of the potential. This potential yields a continuous
distribution of neuron states and thus defines an analogue network model in which q̂ is non-
trivial. We investigate a phase diagram for the analogue network model and elucidate the
effects of the multiplicative noise on the retrieval properties.

Figure 1 illustrates the storage capacity α as a function of the intensity of the external
noise D. The paramagnetic-spin glass phase boundary for D̃ = 0 is also displayed (solid
thick line). The solid line is for the absence of the synaptic noise, i.e., D̃ = 0. The line in
figure 1 denotes the numerical solution of the order parameter equations for each intensity
of the synaptic noise D̃ = 0, 0.2, 0.4, 0.6 and the retrieval state vanishes at D̃ ∼ 1.05 for
A = 20. The α-D line for the analogue network is deformed compared to the Ising networks.
This is the effect of potential properties and the effective temperature, or the non-trivial order
parameter q̂, while q̂ = 1 for Ising neurons.

We can see that the storage capacity is incrementally decreased as the intensity of the
synaptic noise increases. This result is reasonable since the memories are encoded in the
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Figure 1. Storage capacity α as a function of the intensity of the external noise D for various values
of D̃. The paramagnetic-spin glass (SG) phase boundary for D̃ = 0 is also displayed (solid thick
line). The solid curve denotes the storage capacity for D̃ = 0. The broken (– – –), dashed (- - - -)
and dotted (· · · · · ·) curves represent the storage capacity for D̃ = 0.2, 0.4, 0.6, respectively. The
retrieval state locates below the curve and vanishes at D̃ ∼ 1.05. We set A = 20.

synaptic coupling as local minima of the effective free energy corresponding to equation (5)
and the synaptic noise is expected to disturb the fine structure of the energy landscape.

Figure 2 displays the α-dependence of the overlap m1 obtained from the SCSNA together
with that from numerical simulations with N = 3000. We can see that the overlap m1 decreases
as the number of embedded patterns α increases and retrieval state vanishes (m1 = 0) at
αc ∼ 0.049.

Figure 3 illustrates the distribution of the thermal average of the state of neurons, or the
local magnetization 〈xi〉 at D = 0, D̃ = 0.5, α = 0.1, A = 20 obtained from numerical
simulations with N = 3000. We can see from figure 2 that the overlap m1 = 0 in this
regime. However the local magnetizations 〈xi〉 s are seen to distribute around 〈xi〉 = ±1.
This means that a spin glass phase arises in this regime. We can also show the existence of the
non-retrieval spin glass phase analytically by solving the set of order parameter equations (6),
(14a)–(14e). Since m1 = 0 in the non-retrieval phase, the order parameter equations (14a)
and (14c) become

σ 2
z = α

(1 − U)2
〈F 2(z)〉z, (16a)

U = 〈F ′(z)〉z, (16b)

where 〈·〉z denotes the average with respect to the Gaussian random variable z. For the non-
retrieval phase m1 = 0, it is trivial that the order parameter equation m1 = 0 = 〈ξF (z)〉ξ,z

holds. By definition of the transfer function F, the order parameter U is rewritten as

U = βeff(q̂ − q), (16c)
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0
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 0.4

 0.6

 0.8

1

0  0.02  0.04  0.06  0.08  0.1

m

α

Figure 2. α-dependence of the overlap m1 obtained from the SCSNA (solid curve) together with
that from numerical simulations with N = 3000 (dots). The potential is given by equation (15)
with A = 20. The intensities of additive and multiplicative synaptic noise are D = 0 and D̃ = 0.5
respectively.

-1.5 -1 -0.5  0  0.5  1  1.5

local magnetization

Figure 3. Distribution of the thermal average of the state of neurons, or the local magnetization
with parameters D = 0, D̃ = 0.5, α = 0.1, A = 20. From figure 2 this parameter set locates in
the non-retrieval phase. This distribution shows that the non-retrieval spin glass phase arises in
this regime.

where q = 1
N

∑
i〈xi〉2 is the Edward–Anderson order parameter. The set of order parameter

equations (6), (14d), (14e), (16a)–(16c) takes a closed form. Thus we can find the non-retrieval
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spin glass phase by solving these equations to obtain q �= 0. Since the Edward–Anderson
order parameter q is expected to be small in the regime close to the paramagnetic phase,
the Taylor expansion with respect to q is applicable for these order parameter equations to
illustrate the paramagnetic (q = 0)-spin glass (q �= 0) phase boundary (see figure 1). This
boundary is expected to correspond to the de Almeida-Thouless (AT) line. The study on the
relationship between the SCSNA and the replica symmetry breaking is underway.

5. Concluding remarks

We have derived the TAP equation for a stochastic analogue neural network with temporally
fluctuating multiplicative synaptic noise, which is not found in the literature. More specifically,
we have derived the TAP equation together with the set of order parameter equations by using
the SCSNA and the cavity method. Our original model does not have the concept of free
energy. Since the self-averaging property holds in the thermodynamic limit N → ∞, we have
found that the nonlinear Fokker–Planck equation (3) becomes quasi-linear to allow one to
obtain equilibrium probability density obeying the Gibbs one with effective temperature and
hence that the network with white synaptic noise has the effective Hamiltonian in the large-
N limit. Thus the cavity method, which is applicable to the model with energy concept,
becomes available to obtain the (pre-)TAP equation. Unlike the case without synaptic noise,
the concrete form of the transfer function F of our model has been found to depend not only
on the coefficient of the Onsager reaction term but also on the order parameter q̂. q̂ as well
as the coefficient of the Onsager reaction term has been obtained self-consistently within the
framework of the SCSNA. The full TAP equation straightforwardly follows from the pre-
TAP equation by substituting the solutions of the order parameter equations into the pre-TAP
equation (10).

Furthermore, we have found that the storage capacity of the network gradually decreases
as the intensity of the synaptic noise increases, since the fine structure of the energy landscape
tends to disappear by the interference of the synaptic noise. This effect of the interference of
the synaptic noise on the behavior of the retrieval property has been shown to appear via the
effective temperature β−1

eff � D.
All the results presented in this paper are obtained via the cavity method and the SCSNA.

On the other hand, the order parameter equations (14a)–(14e) can be reproduced as the replica
symmetric case by the replica method, since the system has the effective Hamiltonian (7). Thus
our results are expected to be exact within the replica symmetric approximation. However, the
development of the analysis in the framework of the SCSNA for replica symmetry breaking
solutions is now underway.

In other works dealing with the temporal fluctuation in synaptic couplings [14, 15], the
authors study the case of the fast synapse dynamics. Then the synaptic coupling is modified
to take the form of ‘effective synaptic coupling’ and the system becomes to have an effective
Hamiltonian. In this case the ‘effective synaptic coupling’ is straightforwardly determined
by both the number of embedded patterns and the intensity of Langevin noise associated with
neuron dynamics. On the other hand, the time scale of fluctuation of synaptic coupling in our
model is comparable to that of the neuron dynamics. Our model results in having the ‘effective
temperature’ and hence the effective Hamiltonian in the thermodynamic limit. However, in
our model, the ‘effective temperature’ is determined only self-consistently together with the
other order parameters.

In this paper, we have dealt with a network subjected to asymmetric multiplicative synaptic
noise given as white noise involving both pre- and post-neuron, and the noise has no correlation
with the synaptic coupling given by the Hebb learning rule. However some other versions of
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synaptic noise may be considered: (i) synaptic noise depending only on pre- or post-neuron,
(ii) synaptic noise correlated with the Hebb learning rule and (iii) coloured synaptic noise. For
some of these cases, one can rigorously derive the TAP equation and the set of order parameter
equations similarly to the case we have seen in this paper. The analysis for such cases will be
reported elsewhere.
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